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Abstract
The anomalous birefringence and circular differential reflection of NH4H2PO4 (point group
4̄2m), cut on the optic axis, have been found to cause an additional signal in measurements of
the optical rotation employing polarized light technology, with the sample between crossed and
slightly modulated linear polarizers (tilting high accuracy universal polarimetry). The azimuthal
rotation of the linearly polarized light, up to 100 times larger than expected, is described in
terms of a circularly polarized light mode along the optic axis of varying amplitude.
Experimental evidence leading to our conclusion is given and a qualitative model for the effect
is presented.

(Some figures in this article are in colour only in the electronic version)

Dedicated to Professor Siegfried Haussühl.

1. Introduction

The state of polarization of light passing through a material
may change depending on the symmetry of the medium [1].
The known mechanisms introducing those changes include
natural and induced linear refraction plus dichroism and
reflection, natural and induced optical rotation (OR), natural
or induced circular dichroism (CD), as well as the Raman
effect, Cotton Mouton effect, natural and induced Faraday
effect, nonlinear optics (SHG), and certain aspects of negative
refractive indices [2]. Ferroic media may drastically enhance
these interactions [3] not to forget liquid crystals5 in which

4 Author to whom any correspondence should be addressed.
5 Some of the recent discoveries within the vast field of nematic and
cholesteric liquid crystals are listed here, specifically ferroelectric and
photoferroelectric liquid crystals [4].

these effects are of immense technical and commercial
importance.

It is often observed that the chiroptical properties interfere
with linear properties and in such cases special techniques are
needed to determine the chiroptical strength of a medium. In
the past, such techniques have successfully been applied to
measure, for example, the optical rotation of crystals where
the symmetry is compatible with the existence of chiroptical
properties [5]. In particular, the optical rotation strength
of NH4H2PO4 (ADP) is well understood [6], and its linear
refractive indices are known to 5 figures of decimals [7].
In addition, the second harmonic generation (SHG) tensor is
established [8] and therefore one should be able to predict the
polarization signature of this material for all possible directions
of incident light. The optical rotation in tetragonal NH4H2PO4

is governed by a second-rank axial tensor. The point group
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of ADP [9] is 4̄2m and the c-axis coincides with the optic axis
(oa) where light passes through the crystal without the effect of
linear birefringence. ADP is birefringent in all other directions,
with optical rotation being absent only in the {110} planes
(note, that ADP is an optically active, non-enantiomorphic,
non-chiral compound [10]).

The measurement of optical rotation in linearly birefrin-
gent crystals involves polarimetric methods6 where incoming
and analyzing polarizations are modeled concomitantly with
changes of the birefringence of the sample. Such birefringence
changes can be induced by varying the temperature, the
wavelength, or the direction along which light passes through
the material. The latter has been successfully applied to
separate optical rotation (a result of circular birefringence)
from the much larger effect of linear birefringence via the tilter
method [12], where in addition to the so called ‘HAUP’ set-
up [13], the sample is successively rotated about an axis t
perpendicular to a laser beam and the linear birefringence and
optical rotation are derived for each rotation angle.

In applying this technique to a plane-parallel polished
plate of optical quality prepared from an ADP crystal,
a specific behavior for optical rotation was expected in
accordance with numerous other experiments on birefringent
crystals and the known experimental properties of ADP [5].
It was therefore surprising to find, that for the special case of
a sample that was nearly perfectly cut normal to its four-fold
symmetry axis parallel to the oa, a signal was detected that
was up to 100 times larger than expected by calculation from
the known tensorial properties. The question then arises as to
whether this discrepancy could arise from multiple reflections
inside the sample, from other imperfections of the device or
from the sample itself.

There have been attempts to include multiple reflection in
the treatment of OR in birefringent media, which have resulted
only in a modulation of the OR reading within the range of
a few per cent [14]. The effect of a wedge-shaped sample
has been studied as well, showing a decrease of the measured
chiroptical values [15].

Below, we outline the experiments that we have carried
out, together with a qualitative model to explain our
observation7. We believe that under certain conditions, circular
differential reflection (CDR) [17] on the ADP surface initiates
the additional signal which adds to optical rotation with an up
to two orders of magnitude larger contribution. We believe
that CDR causes a circularly polarized light mode8 propagating
along the optic axis which interferes with the transmitted
light. To the best of our knowledge, this mode, which we
call a ‘surface induced reflective circularly polarized mode,
SIRCPM’ has not been described before.

It is important to understand how SIRCPM may affect the
outcome of chiroptical measurements, the results of which are

6 Other polarimetric techniques currently used to mainly measure linear
birefringence are described here [11].
7 The additional signal was first mentioned by us during measurements of the
optical rotation of pentaerythritol [16].
8 The term ‘circular polarized light’ describes a state of light polarization in
which the electric field of the light wave rotates about the wave propagation
direction. This is mathematically described by two orthogonal linearly
polarized waves along the same direction that are out of phase by a quarter
wave length.

Figure 1. (a) Schematic representation of the tilter device. 1: light
source (laser, 670 nm), 2: polarizer (Nicol prism), 3: tilting stage, 3a:
definition of the eigen-ray direction angle θ , 3b goniometer to adjust
the sample orientation, 4: analyzer (Nicol prism), 5: photodiode and
preamplifier electronics. (b) photograph of the device. Reproduced
with permission from [5]. Copyright 2000 IOP Publishing.

otherwise corrupted and therefore difficult to compare with
model calculations. Wrong conclusions may otherwise follow
affecting our attempts to understand and predict the optical
features of crystals.

2. Experimental details

2.1. The tilter method

The tilter device [12] (figure 1) represents a modified HAUP
set-up and is used to measure chiroptical signals such as
optical rotation in the presence of the obscuring effect of
linear birefringence and takes into account contributions from
small but unavoidable misalignments of the sample and
shortcomings of the optical components.

HAUP represents a variant of Mueller–Stokes measure-
ments (MS) which sandwiches a sample between two linearly
polarizing modulators [18]. While for MS the modulation of
incident and analyzing sections includes many different states
of polarization, HAUP only employs linear polarizing compo-
nents and limits the modulation range to a few degrees which
in turn requires the optical eigenmodes of the sample to be well
aligned with the incident polarization. The disadvantage of
restricted freedom in sample orientation is outbalanced by a
much larger sensitivity to OR than general MS.

The resultant output of a HAUP scan is partitioned into
a signal related to chiroptical effects, another related to the
geometrical alignment of the sample and a third to the phase
factor

δ = 2π L[no − n(α)]/λ (1)
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L denotes the optical path length, no the ordinary refractive
index in ADP for an eigenmode along the tilt axis, α is the
tilt angle measured from the optic axis, λ is the wavelength
of the incident light, and n(α) is the refractive index for
the eigenmode perpendicular to the tilt axis and the wave
propagation direction with wavevector k.

As a rule of thumb, the signal-to-noise ratio of a
chiroptical contribution to a measurement is optimized if the
range of modulation is close to the expected effect. For
HAUP, the contribution of OR to the change in detected
light intensities for modulations of around 1◦ is estimated by
the expression ϕ(k) sin(δ)/δ, where ϕ(k) is the OR along
the wavevector (see equation (18) in appendix A). The OR
component perpendicular to the oa in ADP is thus found to
account for a few per cent of the measured intensity variations
introduced by the polarizer and analyzer modulations (see also
equation (6), vide infra).

The normalized intensity I/Io of the light of amplitude E
passing through the polarizer, sample and analyzer, is written
approximately as a bi-quadratic polynomial that is normalized
to the amplitude of polarizer angles Y 2 and �2 (appendix B):

I/I0 = E E∗ = a0 + a1Y + a2� + a3�Y + �2 + Y 2, (2)

where Y and � modulations are considered to be small (less
than 2◦). The coefficients ai are expressed as shown below,
with L: sample thickness, ρ optical rotatory power, calibration
error 
 = Y + 90 − �, extinction offset angle θ in the
plane perpendicular to the wavevector inside the sample, and
small residual parasitic ellipticities p and q of the polarizing
components.

a1 = 2

(
−ρL

δ
+ p

)
sin δ + 2
Y − 2θ(1 − cos δ), (3)

a2 = −2

(
ρL

δ
+ q

)
sin δ + 2
Y cos δ + 2θ(1 − cos δ), (4)

a3 = 2 cos δ. (5)

The chiroptical contribution is obtained from −(a1 + a2),
the orientation-related signals are derived from (a2 − a1), and
the phase factor δ is obtained from a3.

2.2. Sample preparation

Samples of optical quality were cut from a large single
crystal grown from aqueous solution and then cut with a
wet-wire saw and oriented as well as shaped with sapphire
powder and isopropanol as grinding fluid on a glass substrate
(figure 2(c)) [19]. The orientation of the sample was
established via conoscopic imaging with a polarizing light
microscope. The oriented and plane-parallel samples were
polished with polishing paper placed on a glass plate and
slight amounts of humidity introduced by exhalation resulting
in clear, inclusion free, glass-like plates of 1 cm2 cross-section
and of thickness between 0.2 and 2 mm.

Figure 2. (a) Schematic of the measurement geometry. The ADP
sample is cut on the optic axis (oa) and tilted by angle α to introduce
birefringence. Strong anomalous signals were observed when the
incident polarization is along 〈100〉, but no additional signal and no
OR is observed for polarizations along 〈110〉. (b) The representation
surface of OR and amplitude A from equation (8). A change of sign
is denoted by lighter versus darker colored lobes. (c) Crystal
morphology and sample cut; image prepared with computer program
WinXmorph [17].

2.3. First experimental results

With an ADP sample cut normal to the optic axis as shown
in figures 2(a) and (c), the value of δ increases with the
angle between the laser beam and the optic axis. As a
result, the cos(δ) signal (parameter a3/2) oscillates with δ.
The chiroptical signal, derived from −(a1 + a2)/4, should
show a ϕ(α) sin(δ)/δ dependency (appendix A). The parasitic
contribution sin δ(q − p)/4, although not negligible, is still
small. Taking into account the tensorial character of the optical
rotation, the corresponding intrinsic rotation angle ϕo(α)

increases with tilt angle α. The expected signal ϕOR for ADP,
when cut on the oa, then follows, to a good approximation, for
tilt angles below 20◦ (see appendix C):

ϕOR = c′ sin(c′′α2), c′ = 0.05◦,

c′′ = constant value.
(6)

This expression, however, serves only to estimate the
signal strength due to OR. The analysis of the raw intensity
readings is made with an exact treatment of birefringence and
tensorial character of OR in ADP.

Separating parameters a1–a3 into their different contribu-
tions allowed us to study the dependence in equation (6) far
from the effects of misalignments and parasitic ellipticities.
However, the observed behavior consisted of a large contri-
bution to the rotatory signal (figure 3) which was previously

3
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Figure 3. A large signal overlays the expected response. Dots:
experimental reading of azimuthal rotation, solid line: equation (5)
with fitted amplitude A. The contribution due to optical rotation
oscillates within ±0.05◦. The additional signal can reach 5◦ in ADP,
which is 100 times larger than OR, but which varies strongly
between samples. Sample thickness 1.32 mm, wavelength 670 nm,
Anomalous birefringence was observed along the optical axis with a
phase factor δo = 0.7(1), vide infra, figure 6.

Figure 4. Dependence of amplitude A (normalized) from
equation (5) on rotation of the sample about the oa. Two
measurements at azimuthal angles σ and σ + 180◦ were averaged.
The azimuthal rotation is largest for light polarized along either the
a-axis or b-axis9 . This behavior was observed in all samples,
regardless of the maximum observed amplitude A from equation (5)
(first 2 points repeated above 180◦ for clarity). The anomalous phase
factor for the data plotted here was about a δo = 0.1; see also
figure 6.

described by the empirical expression [16]

ϕ = A
π

2

δ

π2 − δ2
sin2

(
δ − π

2

)
, (7)

where A is a constant amplitude which could not possibly be
related to parasitic ellipticities p or q .

To complicate matters, the signal strength of this
contribution was found to vary strongly when probing different

9 We expect to carry out x-ray anomalous scattering experiments in due course
to ascertain the absolute structure of our crystal and thus determine which of
these two axes applies here.

1

0.5

0

-0.5

-1

-1 0 1

6

4

2

0

-2

-4

A
 (

°)

-2 2
x (mm)

1.5

-1.5

y 
(m

m
)

Figure 5. The variation of amplitude A, equation (5), across a
sample exhibiting anomalous birefringence along the optic axis.
Thickness 1.32 mm, probing wavelength 670 nm.

sample areas or samples. Several tests were performed to
elucidate the origin of these confusing observations. The
signal was found to depend on the sample preparation, but
could not be modeled by inserting an absorption filter after
the sample intended to block any second harmonics of the
incident laser light. Covering the surfaces with cover slides
and oil as immersion fluid was of no significant effect. Most
strikingly, when the sample was rotated azimuthally, so that
the incident linear polarization would point into different
directions in the (001) plane perpendicular to the optic axis, the
parameter A followed that for optical rotation, i.e. it vanished
for polarizations along 〈110〉 and was largest along [100] and
of opposite sign along [010] (figures 4, 2(b)).

The irregular dependence of amplitude A of the additional
signal from equation (7) on sample preparation was studied in
detail taking full tilt scan topographs. A single tilt scan gives
information on the three-dimensional orientation of the sample
(offsets χ and βo, see equation (24), appendix B) For a given
birefringence of the sample of thickness L, the optical rotatory
power, ρ22 = −ρ11 in ADP, the amplitude of the additional
signal A, and concomitant with the offset angle μ, the offset
between polarizer and analyzer. Figure 5 shows the color-
coded distribution of amplitude A across one of our samples
which showed signs of twinning.

Most importantly, the signal was found to be correlated
with a small anomalous birefringence with a phase shift up to
δo = 0.7, causing a small splitting of the optic axis into two
axes. The direction of the splitting was along 〈110〉 (figure 6,
color-coded images in conoscopic geometry employing the
Milliview technique [20]). The sample thickness was not found
to be important, although the samples needed to be oriented
precisely on the optic axis. We also carefully verified that the
direction of the axis split was not correlated to the sign of the
effect.

3. Discussion

3.1. Numerical simulation of a sample cut on the optic axis

To find an explanation for these findings, which did not arise
from errors in the set-up, as is evident by the observed sign

4
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Figure 6. The impact of anomalous birefringence along the optic
axis. The splitting of the optic axis (10×—objective, wavelength
550 nm) is in directions 〈110〉. (a) Color-coded representation of
| sin δ|. (b) Color-coded extinction angle ϑ of the anomalous
birefringence, (c) correlation between A and anomalous
birefringence δo, which was derived from the calibrated and squared
split distance of the optic axis (appendix E, equation (19)). The split
direction had no effect on our measurements. Amplitude A was
derived from tilt scans similar to those in figure 3 at the same
locations where the axis splitting was observed.

changes under rotation of the sample, we tried a simulation
of these measurements via Jones matrices [21] and started by
considering the sample to be composed of infinitesimally thin
slices.

The optical features of such thin slices may be represented
by the products of Jones matrices for infinitesimal circular
dichroism (cdr), and linear birefringence, both scaled down to
the thickness of a slice. A more or less accidentally found
expression for a linearly varying cdr along the optical path,
Mcdr, was tried to reproduce the measurement. The iteration
starts with Jones vector J1 = (Eo, 0) representing linearly
polarized light. Birefringence is introduced via the phase factor
δ:

Mcdr =
[

1 ip
−ip 1

]
; p = A

(
1 − 2k

m

)
(8)

Jk+1 =
[

1 − iδ
2m 0

0 1 + iδ
2m

]
Mcdr Jk; k = 1 · · · m. (9)

Numerical iteration gives a new Jones vector:

Jm = (Ex, Ey) = Jm = (Ex, Ey) = Eo(xe−idx , ye−idy ).

(10)
With a phase difference of d = (dy − dx), the azimuthal

rotation is found from the finally resulting Jones vector as [1]

2ϕ = tan−1[2xy cos(dx − dy)/(x2 − y2)], (11)

and to our surprise, the numerically found dependence, figure 7
gives a good approximation to that of equation (7) which

Figure 7. Measured data (open circles) of azimuthal rotation versus
phase factor δ and numerical simulation (solid line). The dashed line
through the data represents equation (5). The oscillation (dotted line)
with small amplitude represents the expected contribution by OR
following equation (6). The amplitude A which is the same for the
numerical and analytical representations were obtained from a best
least-squares fit to the data.

describes the observed signal. Note that the empirical result
from equation (7) and that of the numerical procedure are
almost indistinguishable. This result, however, was even more
confusing because ADP does not absorb light at the probing
wave length nor is a varying CD physically meaningful within
the understood concepts of optics as described in literature.
Moreover, this result does not explain the role of anomalous
birefringence which seems to be necessary for this effect to
occur.

3.2. Qualitative model for large signal

The meaning of Mcdr, which is of a circular dichroism type
Jones matrix, but with varying component, is to create a
circularly polarized light mode along the oa in the first half
of the sample and then let it disappear smoothly towards the
end of the sample with the amplitude varying parabolically.

This does not imply that ADP is circular dichroic. The
principle behind a procedure like the one here employing
Mcdr is not different to that used to treat optical rotation.
The physical interpretation for OA, for example is based on
circular birefringence, which can be simulated by a rotation
matrix, because the sum of left and right circularly polarized
modes of equal amplitudes, but different velocities, into which
a linearly polarized wave splits when entering an optically
rotatory medium, results in a rotation of the linear polarization.
Attributing a rotation of the polarization to the medium as
in appendix A, equation (13) simplifies the mathematical
description.

Here, we demonstrate how the effective light modes along
the oa are caused by multiple circular differential reflections,
the effect of which is simulated by a creator/annihilator matrix
Mcdr, equation (8).

ADP is optically active for any angle of light incidence
other than within {110} planes. A linearly polarized wave

5
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Figure 8. Circular differential reflection on a tilted ADP plate. R(L)
denote right(left) circularly polarized light. oa: direction of the optic
axis. Fat arrows: incident linearly polarized light. Striped arrows: net
circularly polarized light traveling along the optic axis. The
reflections of linearly polarized light are not shown for clarity.

can be thought of being composed of two circularly polarized
waves (cpw) which will be reflected by different amounts in
the presence of optical rotation. This causes a net circular
polarization inside the crystal in addition to the transmitted
linearly polarized wave. The strength of the CDR effect
was estimated from the theoretical treatment by Meteva and
Lalov [17]. In interpreting their equations, the CDR is found
to be proportional to γ11ε

3/(ε2
o − ε2

e), a few per cent in ADP
equivalent to possible azimuthal rotations of several degrees10,
where γ11 is related to the optical rotatory power, and ε, εo, and
εε are the dielectric constants at optical frequencies along the
incident polarization direction, and along the ordinary, and the
extraordinary refractive indices, respectively.

The sample exit face causes CDR as well, but produces
reflected and transmitted circular polarizations of opposite
hands compared with the entrance face. The transmitted cpw
from both surface reflections will cancel out behind the sample
in the absence of linear birefringence. The resulting waves
and states of polarization (neglecting secondary reflections and
linearly polarized reflections) are depicted in figure 8.

Two cdr waves propagate inside the sample, both of the
same hand, but traveling in opposite directions. Only those
circular polarizations traveling along the optic axis remain
unaffected by linear birefringence in a uniaxial crystal like
ADP. The waves, however, cannot interfere, because the
electric field vectors do not rotate ‘synchronously’: they rotate
in opposite directions. Overlap at any time and position of the
waves is minimal.

A small anomalous birefringence along the oa induces
a phase shift δo between the components of the circularly
polarized wave (cpw) inside the sample, seen in projection
on the oa. This results in a reduction in the amplitude of
the cpw and creates a second circularly polarized wave of
opposite hand proportional to sin(δo) (see appendix D for
details). The direction of the anomalous birefringence seems
not to be relevant here, whereas it was found to be essential

10 In [17], the components γ11 and γ22 of the optical rotation tensor were
assumed to be of equal size and sign. For ADP γ11 is of opposite sign of γ22

and circular polarization caused by reflection changes sign when the sample is
rotated around the optic axis by 90◦.

for the creation of anomalous circular extinction, ACE, and
anomalous azimuthal rotation, AAR, described by us earlier
for dyed crystals showing OR signatures even though the host
crystals were centrosymmetric [22].

The wave created by anomalous birefringence is now of
opposite hand and thus rotates with the wave returning from
the exit face and vice versa. Only the projections on the
oa of the transmitted and returning cpw interfere inside the
crystal with the projections of the waves created by anomalous
birefringence. Similarly, the anomalous birefringence creates
a wave of opposite hand out of the returning wave and
interference is possible again along the oa. Outside the sample
all circularly polarized waves will mainly cancel out. Since
the waves created by anomalous birefringence start at zero
amplitude on the sample surfaces, no interference wave C(z)
is possible on these boundaries.

The problem is symmetric with respect to the intersection
in the middle of the sample. At the surfaces (0) and (a) we
have no interference as pointed out above. Let k ‖ z be the
wavevector along the oa, A(z) and B(z) the amplitudes of
cpw due to reflection and anomalous birefringence, then the
interference wave results from

C(z) = A(z)e−ika + B(z)eika

at surface z = 0 : A(0) + B(0) = 0.

Because of cpw being generated out of light along the
optic axis with unknown circular polarized amplitude E(z)
in proportion to zδo/a (appendix D) we have to assume that
A(z) = zδo E(z)/a which forces A(0) = 0 and also B(0) = 0.
The sign of δo should not matter, and indeed, we observe
the same sign of amplitude A for different optic axis splitting
directions. Further we need to consider:

at surface z = a : A(a)e−ika + B(a)eika = 0.

We are not at liberty to change k to extinguish
the exponentials, however, when assuming that E(z) is
proportionally to (a–z) this boundary condition is satisfied.

The simplest non-trivial solution that satisfies the system
of equations and boundary conditions for all values of z is then
achieved with the ‘Ansatz’ (figure 9):

A(z) = B(z) ∝ δoz(a − z)/a, 0 < z < a. (12)

This is consistent with parameter p in the Jones
matrix Mcdr from equation (8) discussed above in the
numerical simulation which is found to produce cpw with
parabolically varying amplitudes, figure 10. The integral of p:∫ k

0 A(1 − 2k
m ) dk = A(k − 1

m k2) −→
k=z,m=a

A
a z(a − z) is indeed of

the same form as equation (12). Amplitude A in equation (7) is
thus in proportion to anomalous birefringence along the optic
axis, described by phase factor δo.

The physical meaning of this is that the projection along
the oa of the circularly polarized waves interfere more when
further away from the surfaces, whereas at shorter distances
to the surfaces the amplitudes of all interfering waves need to

6
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Figure 9. Qualitative model for SIRCPM. Striped arrows: two
circularly polarized waves travel towards each other and produce
additional cpw of opposite hand in the presence of anomalous
birefringence. The interference of the waves is represented by a
linearly varying CD related matrix component (doubled line). The
final interaction with birefringence of the crystal along the
wavevector of the incident wave is treated via iteratively multiplying
the matrices of the birefringence effects and varying CD of a thin
slice.

reach smoothly the boundary condition of vanishing amplitude
(figure 9). We abbreviate the name of this mode as SIRCPM, a
surface induced reflective circularly polarized mode.

If the waves after the sample (see appendix D,
equation (30)) do not perfectly cancel out in the presence of
normal and anomalous birefringence as well as varying surface
qualities any remaining circular polarization is interpreted by
HAUP as circular dichroism and this adds to the orientation
angle μ. A weak correlation between μ and A was indeed
found (see also equation (24) in appendix B which describes
how the orientation of the sample affects the experiment).

For incident light propagating along the optic axis
SIRCPM cancels out. Only if waves along ordinary
birefringent directions of the crystal interfere with a projection
from the modes along the oa is their presence noticed. The
projection of SIRCPM on the linearly polarized wave running
through the crystal at an angle towards the sample normal
vector becomes less favorable at steeper incident angles;
however, the projection on the optically active directions will
increase to compensate for it, qualitatively explaining why
amplitude A in equation (7) is constant over the range of tilt
angles in the experiment.

Finally we need to ask if the waves along the oa actually
exist. We may answer this first by considering that the laser-
illuminated region on the sample is about 50 μm in diameter in

our set-up. At a sample thickness above 1 mm and tilt angles
of up to 35◦ it seems unlikely for the incident and returning
waves to overlap unless they follow the same path. The only
distinguished direction that is tilt angle independent is the one
along the optic axis. The energy required to form SIRCPM may
be understood from circularly polarized Huygens elementary
waves from which the interference modes along the optic axis
form. Unfortunately, the intensity of any remaining light along
the oa outside the sample is very small and may be difficult to
detect for an independent proof of our model.

4. Conclusion

We have showed how circular differential reflection can
cause an additional signal to measurements of optical rotation
employing HAUP when a sample is probed with incident
light close to an optic axis. The additional signal requires
anomalous birefringence of the sample, without which nothing
is observed. The effect is described by a circularly polarized
light mode along the optic axis of varying amplitude.

Further work is under way to test our model on crystals
of different symmetry, compositions, and the impact of electric
fields to induce birefringence, and to complete and refine the
theoretical treatment. It will be tested further if this effect can
be used to measure optical rotation in uniaxial crystals when
induced via an electric field along the c axis which can induce
a splitting of the optic axis (see for example [20]) or to measure
the electro-optic effect when the optical rotation is known.

Acknowledgments

We are grateful for financial support to the Engineering
and Physical Sciences Research Council (EPSRC, UK),
the Petroleum Research Foundation (PRF, USA), the NSF-
STC Program under Agreement No. DMR-0120967, the
Royalty Research Foundation of the University of Washington,
Seattle (RRF, USA), the Canary Islands Government
(Project No. PI2001/093), and the FPU (AP2000-2139)
research grant from the Education, Culture and Sports Ministry
of Spain.

Appendix A. Jones formalism for optical rotation
and birefringence

Complex optical properties can be represented as the product
of individual operators for N successive infinitesimal layers of
the sample. Consider the azimuthal rotation ϕ due to OR after

Figure 10. Parabolically varying amplitude of circularly polarized waves along the optic axis as a result of circular differential reflection and
anomalous birefringence. The electric fields E of interfering waves rotate with the same sense in the plane normal to wavevector k and remain
at a constant phase towards each other.
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passing through a crystal, with δ, the phase factor. The Jones
matrix JLB for linear birefringence (LB), is given below. The
accuracy of this is of order N−2. With the expression of the
Jones matrices JOR of optical rotation (OR) follows:

JLB =
[

eiδ/2 0
0 e−iδ/2

]
, JOR ≈

[
1 ϕo

−ϕo 1

]
,

Jlayer = JOR JLB ≈
[

1 + iδ/2N ϕo/N
−ϕo/N 1 − iδ/2N

]

=
(

1,−i
δ

2N
,−i

iϕo

N

) ([
1 0
0 1

]
,

[−1 0
0 1

]
,

[
0 1

−1 0

])

=
(

1,− i

N
T1,− i

N
T2

)
(σ0, σ1, σ2) = σ0 − i

N
T · σ .

(13)

According to Schellman and Jensen [23], the product
matrix can be expressed in terms of the Pauli spin matrices or
spinors, σ0, σ1, and σ2. The Jones matrix of the whole crystal
follows from

Jcrystal =
(

σ0 − i

N
T ·σ

)N

≈ e−iT·σ (14)

where T is a mixed circular and linear phase.

With n = T

|T| ; |T| −→
ϕ�δ

δ

2
; (n · σ )2 j = σ 0,

j = 1, 2, 3, . . . follows (15)

Jcrystal = e−i δ
2 n·σ = σ0 − i

δ

2
n · σ − 1

2!
(

δ

2
n ·σ

)2

+ i

3!
(

δ

2
n ·σ

)3

− · · ·

= σ0

[
1 − 1

2!
(

δ

2

)2

+ 1

4!
(

δ

2

)4

− · · ·
]

− in · σ

[
δ

2
− 1

3!
(

δ

2

)3

− · · ·
]

= σ0 cos
δ

2
− in · σ sin

δ

2
=

[
ei δ

2
2ϕo

δ
sin δ

2

− 2ϕo

δ
sin δ

2 e−i δ
2

]
. (16)

It should be noted that this formalism is only successful if
the order in which the matrices are multiplied does not matter.
In the case of matrices that change during the iterative process,
this approach is not applicable, as the order of the matrices is
lost when the product of Jones matrices is transformed into a
summation [exp(−iT ·σ )].

When we apply Jcrystal to a ‘perfectly’ aligned sample,
with light that is linearly polarized along the x direction we
find:

E′ = Jcrystal

(
1
0

)
E0 =

(
e−i δ

2

− 2ϕo

δ
sin δ

2

)
E0. (17)

Let us define rx and ry as the radii of the complex Jones
vector components in polar coordinates, and d = phase
difference between them, and then

ϕobserved ≈ 1

2
tan 2ϕobserved = −rxry cos d

r 2
x − r 2

y

;

rx = 1, ry = −2ϕo

δ
sin

δ

2
, d = δ

2
,

thus

ϕobserved ≈ 2ϕo

δ
sin

δ

2
cos

δ

2
= ϕo

sin δ

δ
. (18)

Appendix B. Jones formalism of TILTER equations
for non-perfectly aligned samples

Consider a sample placed between two orthogonal polarizers
with extinction angle θ . The optical path for the TILTER set-
up is represented by a sequence of matrices where A is the
light amplitude with rotation matrices for the polarizer (R�),
analyzer (RY ), and sample (Rθ ), and parasitic ellipticities of
polarizer and analyzer (Rp), (Rq ):

A = Rt
q Rt

Y

[
0 0
0 1

]
RY Rq Rt

θ J Rθ R� Rp

[
1
0

]
, (19)

with

R� =
[

cos � − sin �

sin � cos �

]
, RY =

[
cos Y − sin Y
sin Y cos Y

]
,

Rθ =
[

cos θ0 − sin θ0

sin θ0 cos θ0

]
, Rq =

[
1 −iq
iq 1

]
,

Rp =
[

1 −ip
ip 1

]

(20)
and

J =
[

ei δ
2

2ϕ

δ
sin δ

2

− 2ϕ

δ
sin δ

2 e−i δ
2

]
, (21)

representing OR (ϕ) and linear birefringence (δ).
Further details of the treatment including parasitic

ellipticities and the 
y-error (misalignment of polarizer and
analyzer) are given elsewhere [10, 24–26]. The product of
all matrices can be approximated by a bi-quadratic polynomial
that is normalized to the amplitudes of Y 2:

I/I0 = E E∗ = a0 + a1Y + a2� + a3�Y + a4�
2 + a5Y 2,

a1 = 2

(
−ρL

δ
+ p

)
sin δ − 2θ(1 − cos δ),

a2 = −2

(
ρL

δ
+ q

)
sin δ + 2θ(1 − cos δ),

a3 = 2 cos δ.

(22)
When allowing for a misalignment of the kind Y =

Y ′ + (
Y ) and neglecting terms of quadratic order in 
Y , the
polynomial transforms into:

I/I0 = a′
0 + (a1 + 2
Y )Y ′ + (a2 + 2
Y cos δ)� + a3Y ′�

+ a4�
2 + a5Y ′2. (23)

The first term (a′
0) is the overall offset in the intensity

measurement.
Furthermore, we need to study the orientation of the

sample when it is tilted by angle, α. Inside the sample we
observe the angle β . The extinction angle θ is a function
of offsets χo, μo, and βo, in the sample orientation (see
figure B.1).

8
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Figure B.1. Stereographic representation of the geometry of a
sample with small orientational offsets χo, μo, and βo, rotated about
tilt axis direction t by angle β. The reference coordinates are t,
wavevector k, and the direction x perpendicular to t and k.

The sample orientation is represented for a small offset
χ of the optical eigenmode in the plane given by the plate
normal and the tilt axis t, and offset μ, which represents a
small rotation of eigenmodes around the plate normal (with
. . .o indicators omitted for clarity):

{ui j} =
( 1 μ 0

−μ 1 χ

0 −χ 1

)
.

The tilt matrix may be represented by

{vkl} =
( cos β 0 sin β

0 1 0
− sin β 0 cos β

)

with polarization tensor a0
i j , Ei = ai j D j , a0

ii = n−2
i and the

transformed polarization tensor from akl = vki vl j uiαu jαa0
αβ .

From the submatrix representing the plane perpendicular
to the wavevector follows:

θ(β) ≈ 1

2
tan 2θ = a12

a22 − a11

= χ(a0
33 − a0

22) sin β + μ(a0
22 − a0

11) cos β

a0
22 − a0

33 sin2 β − a0
11 cos2 β

. (24)

In a uniaxial sample a0
11 = a0

22 and μ would be
meaningless.

Appendix C. Derivation of ϕ = c′ sin(c′′α2)
(equation (6))

We treat the situation where the extraordinary index (ne) is
parallel to the plate normal vector and the tilt axis t is in the
plane of the sample. If the birefringence is small (<0.1) the
differences in path lengths of the light waves due to double
refraction will be negligible. Within the small deviations of
the experimental set-up, we can assume the refractive index
for incident polarizations to be that of the ordinary index

of refraction, no. The refractive index for the extraordinary
wave is related to no and the principal extraordinary index ne

according to [27, 28]:

1

n′2 = cos2 β

n2
e

+ sin2 β

n2
o

. (25)

This can be rewritten as

n′2 = n2
en2

o

n2
e cos2 β + n2

o sin2 β

= n2
en2

o

n2
e(1 − sin2 β) + n2

o sin2 β

and with the assumption of small angles β , and the relation
a2 − b2 = (a + b)(a − b) as well as 1

a+x ≈ 1
a − x

a2 we find

n′2 = n2
en2

o

n2
e + (no + ne)(no − ne) sin2 β

≈ n2
o

(
1 − (no + ne)(no − ne) sin2 β

n2
e

)
. (26)

Thus with 2n = no + ne the birefringence 
n = (no −
n′) ≈ 1

2n (n2
o − n′2) can be approximated as


n ≈ n2
o

n2
e

(no − ne) sin2 β. (27)

The optical rotation of a uniaxial crystal with point
group 4̄2m is derived from the only existing rotatory power
component ρ11 = −ρ22 = ρ as

ϕo = ρL sin2 β. (28)

This leaves us, using the simplification of Snell’s law for
small tilt angles: α/β = no, and thus with 
n proportional to
sin2(β) or β2 for the tilt angle range of the shown experiments
with δ ≈ c′′α2, c′′ a constant factor:

ϕOR = ϕo
sin δ

δ
≈ ρλn2

e sin2 β

2π Ln2
o(no − ne) sin2 β

sin δ

≈ c′ sin(c′′α2). (29)

Appendix D. Circularly polarized light passing a
slightly birefringent medium

A small anomalous birefringence induces a phase shift δo

between the components of the circularly polarized wave (cpw)
inside the sample following a cos(δo) dependence. This results
in a reduction in the amplitude of the cpw plus a second
circularly polarized wave of opposite hand and a phase shift.
When following the light path projection along the oa, at
a distance z from the surface of a plate of thickness a and
anomalous birefringence δo, with f (z) = zδo/2a we find for
the cpw amplitude, employing Jones formalism:(

Ex

Ey

)
=

[
ei f 0
0 e−i f

]
1√
2

(
1
i

)

= 1√
2

(
ei f

ie−i f

)
= 1√

2
cos f

(
1
i

)
+ 1√

2
sin f

(
i
1

)
. (30)

The term in proportion to sin( f ) ≈ zδo/2a denotes
circularly polarized light of opposite hand to that of the
incident wave and is also phase shifted by π/2.
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Appendix E. Anomalous phase factor and optical
axis splitting

We are studying the angle between two optic axes, 2V ,
introduced by a small difference 
n′ in the ordinary refractive
index along two ortho normal directions perpendicular to the
optic axis. Equation (27) can be used to find a relation between

n′ and V :


n′ ≈ n2
o

n2
e

(no − ne) sin2 V .

In conoscopic imaging mode with a polarized light
microscope, the splitting of the optic axis is measured as a
distance ds between the axes with sin(V ) ∝ ds. The anomalous
phase factor which is in proportion to 
n′ is also in proportion
to sin2 V and, thus, to d2

s . After deriving the calibration factor
cs from the split distance of a known sample, we find for small
values of birefringence no − ne:

δo = (csds)
2. (31)

Appendix F. Summary of abbreviations and symbols

[· · ·], 〈· · ·〉 direction, all symmetry-equivalent directions
(· · ·), {· · ·} face normal vector, all symmetry-equivalent

faces
ADP NH4H2PO4 (ammonium dihydrogen phosphate)
α tilt angle
A amplitude of new phenomenon
β tilt angle inside the sample
βo sample orientation offset
CD circular dichroism
CDR circular differential reflection
cdr varying CD related to CDR
cpw circularly polarized wave
cs calibration factor in optic axes split

measurements
d, dx, dy phases of complex numbers in polar coordinates
ds optic axes split distance in conoscopic images
E, Ex, Ey electric field vector and Jones vector

components
χ sample orientation offset
δ, δo phase factor due to crystal-, anomalous

birefringence
E electric field strength
HAUP high accuracy universal polarimetry
J Jones vector
k wavevector (direction of the light wave)
M Jones matrix
λ wave length
L optical path length
μ sample orientation offset
MS Mueller–Stokes measurements
n sample normal vector
n refractive index perpendicular to no and k
ne extraordinary refractive index
no ordinary refractive index

oa, oa optic axis and corresponding direction vector
� analyzer modulation angle
OR optical rotation
ϕ, ϕo, ϕOR optical rotation angle of a measurement,

intrinsic OR, observed OR
rx , ry radii of complex numbers in polar coordinates
ρ rotatory power
SHG second harmonic generation
t tilt axis direction
θ, ϑ extinction angle in HAUP-, in Milliview device
2V optic axes split angle
x, y, z Cartesian coordinates
Y polarizer modulation angle
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